Uptake of inorganic and amino acid nitrogen from soil by Eucalyptus regnans and Eucalyptus pauciflora seedlings.

نویسنده

  • Charles R Warren
چکیده

This study examined whether two species of Eucalyptus can take up the amino acid glycine from soil and compared the uptake rate of glycine with the uptake rates of nitrate and ammonium. Ectomycorrhizal seedlings of two ecologically disparate species were studied: Eucalyptus regnans F. Muell., a fast-growing forest tree from low altitudes; and Eucalyptus pauciflora Sieber ex Spreng., a slow-growing tree that forms the alpine treeline. Seedlings were grown from seeds in field soil. When seedlings were 4-5 months old, soils were injected with equimolar mixtures of isotope-labeled glycine, ammonium and nitrate. Seedlings and soil were harvested 4 and 48 h later. Isotope ratio mass spectrometry analysis of (13)C and (15)N enrichment in plants receiving glycine indicated uptake of 1.5 (13)C for every (15)N at the 4-h harvest (versus 2:1 (13)C:(15)N in labeled glycine), suggesting intact uptake of around 75% of glycine. Gas chromatography-mass spectrometry analysis detected intact (13)C(2),(15)N-glycine in roots, but the pool of (13)C(2),(15)N-glycine was 10-500 times smaller than (13)C and (15)N excess, and no (13)C(2),(15)N-glycine was detected in shoots. This is consistent with glycine being taken up as an intact molecule that is subsequently metabolized rapidly. Both species took up more nitrate than ammonium, and glycine was the least preferred form of nitrogen (N). Microbes took up more N than seedlings, and their preference for N forms was the mirror image of the plant preferences. These data suggest that patterns of microbial uptake may determine plant preference for forms of N.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Root adaptation and nitrogen source acquisition in natural ecosystems.

The capacity for nitrate reduction, as measured by nitrate reductase activity (NRA), was generally low for a range of plant communities in Australia (coastal heathland, rainforest, savanna woodland, monsoon forest, mangrove, open Eucalyptus forest, coral cay open forest) and only a loose relationship existed between NRA and leaf nitrogen concentration. This suggests that nitrate ions are not th...

متن کامل

Investigating the effects of plant growth promoting bacteria and Glomus Mosseae on cadmium phytoremediation by Eucalyptus camaldulensis L.

This research aims to study the effect of Mycorrizal fungus and Plant-Growth-Promoting Bacteria (PGPB) on Cadmium (Cd) uptake by one-year-old Eucalyptus Camaldulensis seedlings. The treatments have involved three levels of heavy metal (0, 30, and 60 mg/kg) for Cd, and three bacterial levels (no bacteria (B0), Bacillus (Ba105), and Pseudomonas (Ps36, Ps448)), inoculated with mycorrhizal fungus G...

متن کامل

Investigating the effects of plant growth promoting bacteria and Glomus Mosseae on cadmium phytoremediation by Eucalyptus camaldulensis L.

This research aims to study the effect of Mycorrizal fungus and Plant-Growth-Promoting Bacteria (PGPB) on Cadmium (Cd) uptake by one-year-old Eucalyptus Camaldulensis seedlings. The treatments have involved three levels of heavy metal (0, 30, and 60 mg/kg) for Cd, and three bacterial levels (no bacteria (B0), Bacillus (Ba105), and Pseudomonas (Ps36, Ps448)), inoculated with mycorrhizal fungus G...

متن کامل

Elongation of Eucalyptus roots during day and night.

Root elongation was measured in mature Eucalyptus pauciflora Sieber ex Sprengel subsp. pauciflora trees in a high-elevation stand, and in seedlings of E. pauciflora and E. nitens (Deane & Maiden) grown in a glasshouse. Elongation of non-mycorrhizal roots (>10 mm long) was measured at 0600 and 1800 h on several consecutive days. Root elongation of seedlings of both species in the glasshouse was ...

متن کامل

Long-term growth and water balance predictions for a mountain ash (Eucalyptus regnans) forest catchment subject to clear-felling and regeneration.

We used a physically based ecohydrological model to predict the water balance and growth responses of a mountain ash (Eucalyptus regnans F. Muell.) forest catchment to clear-felling and regeneration. The model, Topog-IRM, was applied to a 0.53 km(2) catchment for a 3-year pretreatment period, and a 20-year period following clear-felling and reseeding of 78% of the catchment area. Simulations we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tree physiology

دوره 29 3  شماره 

صفحات  -

تاریخ انتشار 2009